Part Number Hot Search : 
RJH60 32213 W566C210 J10025 ADT6402 LL103B LL103B LL103B
Product Description
Full Text Search
 

To Download 10-FZ06NRA045FH01 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  fz06nra045fh01 preliminary datasheet flownpc 0 600v/30a neutral point clamped inverter reactive power capability clip-in pcb mounting low inductance layout solar inverter ups fz06nra045fh01 tj=25c, unless otherwise specified parameter symbol value unit buck diode t h =80c 25 t c =80c 34 t h =80c 36 t c =80c 54 buck mosfet t h =80c 36 t c =80c 44 t h =80c 125 t c =80c 189 230 120 w power dissipation per diode p tot dc forward current a t j =t j max t p limited by t j max a i f t j =t j max v rrm peak repetitive reverse voltage types maximum ratings condition features flow0 12mm housing target applications schematic power dissipation t j max i frm t j max repetitive peak forward current drain to source breakdown voltage v ds dc drain current i d pulsed drain current i dpulse p tot gate-source peak voltage vgs maximum junction temperature a v v 600 c v 150 20 150 maximum junction temperature c t p limited by t j max w 600 t j =t j max a t j =t j max t j =25c copyright vincotech 1 revision: 2
fz06nra045fh01 preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition boost igbt t h =80c 47 t c =80c 50 t h =80c 85 t c =80c 129 t sc t j 150c 6 s v cc v ge =15v 360 v boost inverse diode t h =80c 2 t c =80c t h =80c 21 t c =80c boost diode t j =25c t h =80c 16 t c =80c 21 t h =80c 30 t c =80c 46 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm 36 20 225 150 1200 600 clearance insulation voltage creepage distance t op operation temperature under switching condition -40?+(tjmax - 25) c storage temperature t stg -40?+125 c peak repetitive reverse voltage c maximum junction temperature t j max 150 v ce i cpuls t j =t j max i c power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p limited by t j max v rrm v ge i f t j =t j max t j max p tot w a w v c v a peak repetitive reverse voltage a t j =t j max dc collector current power dissipation per igbt repetitive peak collector current gate-emitter peak voltage maximum junction temperature short circuit ratings boost inverse diode t j =t j max v a v c w a collector-emitter break down voltage t p limited by t j max 600 maximum junction temperature t j max 175 t c =25c v rrm dc forward current p tot copyright vincotech 2 revision: 2
fz06nra045fh01 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 1 2,25 2,7 t j =125c 1,66 t j =25c 57 t j =125c 82 t j =25c 14 t j =125c 22 t j =25c 0,43 t j =125c 0,99 di ( rec ) max t j =25c 16743 /d t t j =125c 15517 t j =25c 0,070 t j =125c 0,137 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1,95 k/w t j =25c 42 t j =125c 83 t j =25c 2,1 3 3,9 t j =125c t j =25c 200 t j =125c t j =25c 25 t j =125c t j =25c 30 t j =125c 31 t j =25c 8 t j =125c 8 t j =25c 269 t j =125c 295 t j =25c 7 t j =125c 140 t j =25c 0,161 t j =125c 0,265 t j =25c 0,085 t j =125c 0,104 100 tj=25c pf k/w thermal grease thickness 50um  = 1 w/mk 0,56 tj=25c v 190 ns m  c mws a/ s nc  a v a ns mws na 150 6800 51 320 34 input capacitance turn on delay time t f output capacitance turn-on energy loss per pulse thermal resistance chip to heatsink per chip r thjh fall time turn off delay time static drain to source on resistance buck mosfet rise time gate to source leakage current gate threshold voltage zero gate voltage drain current turn-off energy loss per pulse gate to drain charge gate to source charge total gate charge reverse recovered charge buck diode rgoff=8  v ds =v gs 30 600 44 0,003 characteristic values value conditions reverse recovered energy peak rate of fall of recovery current peak reverse recovery current i rrm diode forward voltage q rr t rr v f reverse recovery time v (gs)th i gss t d(on) r ds(on) erec i dss q gd q g rgon=8  rgon=8  350 350 30 30 30 c iss c oss vds=vgs f=1mhz 0 q gs t r t d(off) e on e off 0 10 0 20 15 15 350 copyright vincotech 3 revision: 2
fz06nra045fh01 preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 5 5,8 6,5 t j =125c t j =25c 1 1,14 1,8 t j =125c 1,19 t j =25c 30 t j =125c t j =25c 650 t j =125c t j =25c 40 t j =125c 37 t j =25c 10 t j =125c 13 t j =25c 454 t j =125c 502 t j =25c 64 t j =125c 87 t j =25c 0,719 t j =125c 0,959 t j =25c 0,854 t j =125c 1,163 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1,11 k/w t j =25c 9,07 tj=125c 9,43 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk k/w t j =25c 1,5 3,14 3,5 t j =125c 2,71 t j =25c 100 t j =125c t j =25c 92 t j =125c 112 t j =25c 37 t j =125c 52 t j =25c 2,8 t j =125c 5,7 di ( rec ) max t j =25c 20796 /d t t j =125c 20514 t j =25c 0,538 t j =125c 1,387 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 2,32 k/w r 25 tol. 13% t j =25c 19,14 22 24,86 k  r 100 tol. 5% tj=100c 1411 1486 1560  * see details on thermistor charts on fi g ure 2. 288 4620 none tj=25c tj=25c 600 1200 350 25 f=1mhz 0 350 rgon=8  30 30 0 15 75 diode forward voltage reverse leakage current thermistor reverse recovery energy reverse recovery time peak rate of fall of recovery current peak reverse recovery current reverse recovered charge v f 30 0,0012 18 20  a na v v 15 15 480 rgoff=8  rgon=8  v ce =v ge t rr q rr e rec i rrm i r b-value b (25/100) tol. 3% mw 210 power dissipation p rated resistance* nc 470  k ns mws 0 tj=25c q gate gate charge turn-off energy loss per pulse boost diode diode forward voltage v f 20 fall time rise time turn-on energy loss per pulse turn-off delay time boost inverse diode gate-emitter leakage current boost igbt v ge(th) v ce(sat) t r i ges collector-emitter saturation voltage integrated gate resistor e on i ces t d(off) t f e off c oss reverse transfer capacitance turn-on delay time r gint input capacitance c rss c ies output capacitance t d(on) gate emitter threshold voltage collector-emitter cut-off incl diode 137 tj=25c 4000 mws c v a/ s pf v  a ns a copyright vincotech 4 revision: 2
fz06nra045fh01 preliminary datasheet figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) fz06nra045fh01-p965f10 at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 4 v to 14 v i condition v ge from 4 v to 14 v in steps of 1 v figure 3 mosfet figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v buck typical output characteristics 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 5 10 15 20 25 30 0123456 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 00,511,522,533,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) copyright vincotech 5 revision: 2
fz06nra045fh01 preliminary datasheet figure 5 mosfet figure 6 mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a r goff = 8 ? figure 7 fred figure 8 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a buck e on high t e off high t e on low t e off low t 0,000 0,100 0,200 0,300 0,400 0,500 0,600 0 1 02 03 04 05 06 0 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,000 0,100 0,200 0,300 0,400 0,500 0,600 0 8 16 24 32 40 r g (w) e (mws) e rec high t 0,00 0,04 0,08 0,12 0,16 0,20 0 102030405060 i c (a) e (mws) e rec high t e rec low t 0,00 0,04 0,08 0,12 0,16 0,20 0 8 16 24 32 40 r g (w) e (mws) copyright vincotech 6 revision: 2
fz06nra045fh01 preliminary datasheet figure 9 mosfet figure 10 mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a r goff = 8 ? figure 11 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v buck t doff t f t don t r 0,00 0,01 0,10 1,00 0 102030405060 i c (a) t (ms) t rr high t t rr low t 0,000 0,008 0,016 0,024 0,032 0,040 0 8 16 24 32 40 r gon (w) t rr (ms) t doff t f t don t r 0,00 0,01 0,10 1,00 0 8 16 24 32 40 r g (w) t (ms) t rr high t t rr low t 0,000 0,008 0,016 0,024 0,032 0,040 0 1 02 03 04 05 06 0 i c (a) t rr (ms) copyright vincotech 7 revision: 2
fz06nra045fh01 preliminary datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v figure 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v buck i rrm high t i rrm low t 0 20 40 60 80 100 120 0 8 16 24 32 40 r gon (w) i rrm (a) q rr high t q rr low t 0 0,3 0,6 0,9 1,2 1,5 0 8 16 24 32 40 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 20 40 60 80 100 0 102030405060 i c (a) i rrm (a) q rr high t q rr low t 0,00 0,30 0,60 0,90 1,20 1,50 0 102030405060 i c (a) q rr (mc) copyright vincotech 8 revision: 2
fz06nra045fh01 preliminary datasheet figure 17 fred figure 18 fred typical rate of fall of forward and reverse recovery current typical rate of fall of forward and reverse recovery current as a function of collector current as a function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v figure 19 mosfet figure 20 fred igbt transient thermal impedance as a function of pulse width fred transient thermal impedance as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,56 k/w r thjh = 1,95 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,04 8,6e+00 0,06 7,9e+00 0,13 1,4e+00 0,24 1,0e+00 0,23 2,2e-01 0,90 1,4e-01 0,09 3,6e-02 0,50 3,1e-02 0,03 5,0e-03 0,17 3,7e-03 0,05 2,6e-04 0,09 5,7e-04 buck t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 5000 10000 15000 20000 25000 30000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 5000 10000 15000 20000 25000 0 102030405060 i c (a) di rec / dt (a/ms) copyright vincotech 9 revision: 2
fz06nra045fh01 preliminary datasheet figure 21 mosfet figure 22 mosfet power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c single heating t j = 150 c overall heating v ge = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 c single heating t j = 150 c overall heating buck 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 2
fz06nra045fh01 preliminary datasheet figure 25 mosfet figure 26 mosfet safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i c = 30 a th = 80 oc v ge = 15 v t j =t jmax oc buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 10u s 0 1 2 3 4 5 6 7 8 9 10 0 15 30 45 60 75 90 105 120 135 150 q g (nc) v ge (v) 120 v 480 v copyright vincotech 11 revision: 2
fz06nra045fh01 preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v boost 0 20 40 60 80 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) 0 5 10 15 20 25 30 0246810 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 012345 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) copyright vincotech 12 revision: 2
fz06nra045fh01 preliminary datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a r goff = 8 ? figure 7 igbt figure 8 igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a boost e rec high t e rec low t 0 0,5 1 1,5 2 2,5 0 1 02 03 04 05 06 0 i c (a) e (mws) e rec high t e rec low t 0 0,4 0,8 1,2 1,6 2 0 8 16 24 32 40 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1,5 2 2,5 0 1 02 03 04 05 06 0 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1,5 2 2,5 0 8 16 24 32 40 r g ( ) e (mws) copyright vincotech 13 revision: 2
fz06nra045fh01 preliminary datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 30 a r goff = 8 ? figure 11 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v boost t doff t f t don t r 0,001 0,01 0,1 1 10 0 102030405060 i c (a) t ( s) t doff t f t don t r 0,001 0,01 0,1 1 10 0 8 16 24 32 40 r g ( ) t ( s) t rr high t t rr low t 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0,070 0,080 0 8 16 24 32 40 r gon (w) t rr (ms) t rr high t t rr low t 0,000 0,010 0,020 0,030 0,040 0,050 0,060 0,070 0 1 02 03 04 05 06 0 i c (a) t rr (ms) copyright vincotech 14 revision: 2
fz06nra045fh01 preliminary datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v figure 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v boost i rrm high t i rrm low t 0 20 40 60 80 100 120 140 160 0 8 16 24 32 40 r gon (w) i rrm (a) q rr high t q rr low t 0 1 2 3 4 5 6 7 0 8 16 24 32 40 r gon ( ) q rr (mc) 0 20 40 60 80 100 120 140 160 0 102030405060 i c (a) i rrm (a) i rrm high t i rrm low t q rr high t q rr low t 0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 0 102030405060 i c (a) q rr (mc) copyright vincotech 15 revision: 2
fz06nra045fh01 preliminary datasheet figure 17 fred figure 18 fred typical rate of fall of forward and reverse recovery current typical rate of fall of forward and reverse recovery current as a function of collector current as a function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r gon = 8 ? v ge = 15 v figure 19 igbt figure 20 fred igbt transient thermal impedance as a function of pulse width fred transient thermal impedance as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 1,11 k/w r thjh = 2,32 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,06 9,9e+00 0,04 9,8e+00 0,22 1,2e+00 0,25 7,7e-01 0,59 1,4e-01 1,24 1,2e-01 0,17 2,2e-02 0,44 2,0e-02 0,03 2,7e-03 0,25 2,6e-03 0,04 2,7e-04 0,09 4,3e-04 boost t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 5000 10000 15000 20000 25000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 5000 10000 15000 20000 25000 0 102030405060 i c (a) di rec / dt (a/ms) copyright vincotech 16 revision: 2
fz06nra045fh01 preliminary datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc boost 0 20 40 60 80 100 120 140 160 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 15 30 45 60 75 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 17 revision: 2
fz06nra045fh01 preliminary datasheet figure 25 boost inverse diode figure 26 boost inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 4,36 k/w boost 0 2 4 6 8 10 12 024681012 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 copyright vincotech 18 revision: 2
fz06nra045fh01 preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? [] ?= ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 25 100 / 25 11 25 )( tt b ertr copyright vincotech 19 revision: 2
fz06nra045fh01 preliminary datasheet t j 125 c r g on 8 ? r goff 8 ? figure 1 buck mosfet figure 2 buck mosfet turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) fz06nra045fh01-p965f10 v gs (0%) = 0v v gs (0%) = 0v v gs (100%) = 15 v v gs (100%) = 15 v v d (100%) = 350 v v d (100%) = 350 v i d (100%) = 30 a i d (100%) = 30 a t doff = 0,30 s t don = 0,04 s t eoff = 0,31 s t eon = 0,05 s figure 3 buck mosfet figure 4 buck mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v d (100%) = 350 v v d (100%) = 350 v i d (100%) = 30 a i d (100%) = 30 a t f = 0,01 s t r = 0,01 s switching definitions buck mosfet general conditions = = = i c 1% v ce 90% v ge 90% -40 -10 20 50 80 110 140 -0,3 -0,1 0,1 0,3 0,5 0,7 time (us) % t doff t eoff v ce i c v ge ic 10% v ge10% t don v ce 3% -50 0 50 100 150 200 250 300 350 400 2,9 2,95 3 3,05 3,1 3,15 3,2 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,26 0,27 0,28 0,29 0,3 0,31 0,32 0,33 time (us) % v ce i c t f i c10% i c90% -50 50 150 250 350 450 2,95 2,99 3,03 3,07 3,11 3,15 time(us) % tr v ce ic copyright vincotech 20 revision: 2
fz06nra045fh01 preliminary datasheet figure 5 buck mosfet figure 6 buck mosfet turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 10,48 kw p on (100%) = 10,48 kw e off (100%) = 0,11 mj e on (100%) = 0,27 mj t eoff = 0,31 s t eon = 0,05 s figure 7 buck mosfet figure 8 buck fred gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v gsoff = 0v v d (100%) = 350 v v gson = 15 v i d (100%) = 30 a v c (100%) = 350 v i rrm (100%) = -70 a i d (100%) = 30 a t rr = 0,02 s q g = 191,44 nc switching definitions buck mosfet i c 1% v ge90% -20 0 20 40 60 80 100 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e off t eoff v ce3% v ge10% -20 20 60 100 140 180 2,95 2,99 3,03 3,07 3,11 3,15 time(us) % p on e on t eon -5 0 5 10 15 20 -50 0 50 100 150 200 250 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -300 -250 -200 -150 -100 -50 0 50 100 150 3,01 3,03 3,05 3,07 3,09 3,11 time(us) % i d v d fitted copyright vincotech 21 revision: 2
fz06nra045fh01 preliminary datasheet figure 9 buck fred figure 10 buck fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 30 a p rec (100%) = 10,48 kw q rr (100%) = 0,98 c e rec (100%) = 0,31 mj t qrr = 0,05 s t erec = 0,05 s figure 11 figure 12 buck stage switching measurement circuit boost stage switching measurement circuit measurement circuits switching definitions buck mosfet t qrr -325 -250 -175 -100 -25 50 125 200 3 3,025 3,05 3,075 3,1 3,125 3,15 time(us) % i d q r r -100 -50 0 50 100 150 200 250 3 3,025 3,05 3,075 3,1 3,125 3,15 time(us) % p rec e rec t erec copyright vincotech 22 revision: 2
fz06nra045fh01 preliminary datasheet t j 125 c r g on 8 ? r goff 8 ? figure 1 boost igbt figure 2 boost igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) solar inverter ups ups fz06nra045fh01-p965f10 v ge (0%) = 0v v ge (0%) = 0v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 30 a i c (100%) = 30 a t doff = 0,50 s t don = 0,04 s t eoff = 0,70 s t eon = 0,14 s figure 3 boost igbt figure 4 boost igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 30 a i c (100%) = 30 a t f = 0,09 s t r = 0,01 s switching definitions boost igbt general conditions = = = i c 1% v ce 90% v ge 90% -30 0 30 60 90 120 150 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 time (us) % t doff t eoff v ce i c v ge ic 10% v ge10% t don v ce 3% -40 0 40 80 120 160 200 240 280 320 360 400 440 480 520 3,9 3,98 4,06 4,14 4,22 4,3 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 0,3 0,34 0,38 0,42 0,46 0,5 0,54 0,58 0,62 0,66 0,7 0,74 0,78 time (us) % v ce i c t f i c10% i c90% -20 10 40 70 100 130 160 190 220 250 280 310 340 370 400 430 460 490 3,9 3,94 3,98 4,02 4,06 4,1 4,14 4,18 4,22 4,26 4,3 time(us) % tr v ce i c copyright vincotech 23 revision: 2
fz06nra045fh01 preliminary datasheet figure 5 boost igbt figure 6 boost igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 10,55 kw p on (100%) = 10,55 kw e off (100%) = 1,16 mj e on (100%) = 0,96 mj t eoff = 0,70 s t eon = 0,14 s figure 7 boost igbt figure 8 boost fred gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = 0v v d (100%) = 350 v v geon = 15 v i d (100%) = 30 a v c (100%) = 350 v i rrm (100%) = -112 a i c (100%) = 30 a t rr = 0,05 s q g = 407,76 nc switching definitions boost igbt i c 1% v ge90% -20 0 20 40 60 80 100 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 time (us) % p off e off t eoff v ce3% v ge10% -20 0 20 40 60 80 100 120 140 160 180 200 220 240 3,95 3,97 3,99 4,01 4,03 4,05 4,07 4,09 4,11 4,13 4,15 4,17 4,19 time(us) % p on e on t eon -10 -5 0 5 10 15 20 25 -50 0 50 100 150 200 250 300 350 400 450 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -400 -360 -320 -280 -240 -200 -160 -120 -80 -40 0 40 80 120 160 4 4,02 4,04 4,06 4,08 4,1 4,12 4,14 4,16 4,18 4,2 time(us) % i d v d fitted copyright vincotech 24 revision: 2
fz06nra045fh01 preliminary datasheet figure 9 boost fred figure 10 boost fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 30 a p rec (100%) = 10,55 kw q rr (100%) = 5,74 c e rec (100%) = 1,39 mj t qrr = 0,16 s t erec = 0,16 s figure 11 figure 12 buck stage switching measurement circuit boost stage switching measurement circuit measurement circuits switching definitions boost igbt t qrr -450 -350 -250 -150 -50 50 150 4 4,02 4,04 4,06 4,08 4,1 4,12 4,14 4,16 4,18 4,2 4,22 4,24 time(us) % i d q r r -20 0 20 40 60 80 100 120 140 160 180 200 220 240 4 4,02 4,04 4,06 4,08 4,1 4,12 4,14 4,16 4,18 4,2 4,22 4,24 time(us) % p rec e rec t erec copyright vincotech 25 revision: 2
fz06nra045fh01 preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FZ06NRA045FH01-p965f10 p965f10 p965f10 condition outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 26 revision: 2
fz06nra045fh01 preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 27 revision: 2


▲Up To Search▲   

 
Price & Availability of 10-FZ06NRA045FH01

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X